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X-34 Demo Scope

o X-34 model covers parts of the vehicle main
propulsion system, during the captive carry phase
of the flight
— liquid oxygen (LOX) tank
— the pressurization subsystem
— the pneumatics subsystem
— all sensors available in vehicle telemetry

e Does not include the kerosene propellant tank or
the release, burn, and landing phases of the flight
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The Liquid Oxygen tank
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e Two components to the LOX tank, forward
and aft

e Three valves to control pressurization, vent
relief, and engine feed lines
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The pressurization line
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o1 mpre103p Microswitch sensor

* Begins with tank containing gaseous He

supply
e Two regulators on line provide redundancy
and interesting diagnosis cases

e Solenoid pressurization valve regulates flow
of He into LOX tank
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The pneumatlcs |In?
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Microswitch sensor

e Similar to the pressurization line, begins with He
tank and two regulators

e Solenoid valve actuates a large pneumatics valve

« Combination of regulators, solenoid valve, and
pneumatic valve provide for interesting diagnosis
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Data types for X-34 model
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Threshold values Ranges Datatypes
aboveThreshoIc}
belowThreshold upperBoun
loxTemp

aboveThreshold lowerBound feedLineTemperature
belowThreshold ambientTemp

feedLineTemperature.loxTemp.upperBound = belowThreshold

This system of threshold values and ranges is common
to almost all datatypes in model
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| Monitors decide threshold values
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Thresholds on derivatives
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o LOX tank state defined by the states of the
three valves connecting to it

e Pressure derivative used to infer the state
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all valves closed
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Example of X-34 diagnosis
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CommandOpen solenoid valvﬁS

olenoid valve olozed
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Pressure value of Regulator 1 B — heatingRate range

Diagnosis: 3 candidates

® «
(1) Vent relief valve stuck 2 = A
(2) Regulator 1 low I:@:{( ( ( }[

Pressure sensor bad
(3) Regulator 2 low
Pressure sensor bad
Probability of candidate determines order
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X-34 Model summary

 Livingstone model contains a subset of the
components of the X-34 main propulsion system

 Developed in the Stanley modeling environment
 Planned future work:
— Expanding scope of model

e Possible future work
— Language improvements
— Unobservable commands
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Overview

 What does Livingstone do?

General Diagnosis example
X-34 Scope and Description
X-34 Diagnosis example
Issues / Limitations
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What does Livingstone do?

Livingstone is a diagnostic software tool. It tracks
the state of a system based on the commands, the
observations, and a model of the system.

* Livingstone is nhot spacecraft controller, it
advises a controller about the state of the system

e Created to be fast and memory-efficient by
abstracting the system into a discrete domain

e Consistency-based reasoning allows Livingstone
to do a diagnosis even If not all observations are
fully known
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@ Whatis a Livingstone model?

A Livingstone model describes a set of states
for a system, the possible transitions
between states, and the expected output
based on the state.

e States are classified as “ok” and “failure”
o All quantities are discrete values



What is a Livingstone diagnosis?

A Livingstone diagnosis returns the set of states of a
system that are consistent with the commands
Issued and the observed output.

 Takes into account the desired action via the
commands

* Does not need all outputs of a system to do a
diagnosis

* Probabillity of failure states is taken into account



Strategies for a “good”
Livingstone model

e Component-based
* Predictive model
o Safety, not completenes




4&5&3&7 Camler

(1) Nominal
powerOut = on
(2) Rolling Blackout

<no constraints>

-----------------

Example: House light mode

(1) On

powerOut = powerin
(2) Off

powerOut = off
(3) Broken

(1) Nominal
clock = powerin
Observationclock on/off

= <no constraints>
Commandsswitch on/off

-

(1) Nominal @,
light = powerln h

(2) Burned-Out d

<no constraints>
Observationlight on/off




House light example (2)
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Command:
Turn light switch on

Observation:

Light not on
Diagnosis:
(1) Light twneeboout
(2) Switch broken 4
(3) Power in blackout
Observation: e

Clock on
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Model assumptions

 Modeled the main components of the
system, but not all

e Some sensors do not have fault modes, will
probably be added to next release

Failure of the Vent Relief Valve
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Timing Issues

e Often, a new command will be issued while
we are still waiting for the results of the
previous command to be issued. Have to

deal with as a special case In the interface to
Livingstone.

 Howard, are you going to talk about this?
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> Some Issues

 Livingstone requires

the modeler to abstrac

the system into a set c M
discrete states and the
transitions between OO
states. This works ® O
well for a valve e

model...
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Some issues (3)

 Livingstone expects to have full knowledge of commands
sent

« Commands for some components not in the telemetry
stream visible to Livingstone

 Workaround in place, issue could drive future Livingstone
research

What was |
supposed to
do again?
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Some Issues (2)

..but not as well for components with storage
terms, like a tank of liquid.
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